AuthorGAN: Improving GAN Reproducibility using a Modular GAN Framework

Generative models are becoming increasingly popular in the literature, with Gener- ative Adversarial Networks (GAN) being the most successful variant, yet. With this increasing demand and popularity, it is becoming equally difficult and challenging to implement and consume GAN models. A qualitative user survey conducted across 47 practitioners show that expert level skill is required to use GAN model for a given task, despite the presence of various open source libraries. In this research, we propose a novel system called AuthorGAN, aiming to achieve true democratization of GAN authoring. A highly modularized library agnostic repre- sentation of GAN model is defined to enable interoperability of GAN architecture across different libraries such as Keras, Tensorflow, and PyTorch. An intuitive drag-and-drop based visual designer is built using node-red platform to enable custom architecture designing without the need for writing any code. Five different GAN models are implemented as a part of this framework and the performance of the different GAN models are shown using the benchmark MNIST dataset.

Avatar
Raunak Sinha
Staff Research Engineer, Artificial Intelligence

I am interested in developing learning theory for computational sustainability, computer vision and natural language understanding.